Modelling red blood cell survival data

Julia Korell¹, Frederiek Vos^{1,2}, Carolyn Coulter¹, John Schollum², Robert Walker², Stephen Duffull¹

1) School of Pharmacy, University of Otago, Dunedin, New Zealand ~ julia.korell@otago.ac.nz 2) Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand

Background

- Survival of red blood cells (RBCs) is decreased in anaemia of chronic kidney disease (CKD) due to either:¹
 - increase in random destruction.
 - accelerated senescence.
- Commonly, only a mean RBC lifespan value is determined based on RBC labelling experiments.²

Results

- Two-stage approach:
 - Estimation of random destruction preferred in majority of individuals (11 out of 14 in both groups).
 - Significant reduction in RBC survival in CKD patients: -28% compared to healthy controls (p = 0.0002).

 \Rightarrow Better insight into the processes of RBC destruction is desirable.

- A statistical model for the survival time of RBCs has been developed based on the plausible physiological processes of RBC destruction:³
 - Early destruction of unviable RBCs, reduced lifespan of misshapen RBCs, random destruction and senescence.
- The model accounts for short-comings associated with known RBC labelling techniques, such as random labelling with radioactive chromium (⁵¹Cr).⁴

Objectives

- To apply the previously developed model for RBC survival to clinical data.
- To investigate differences in the RBC lifespan in anaemic CKD patients compared to healthy controls.

- Population analysis:
 - A combined error model best described the data.
 - Preference for estimating random destruction confirmed.
 - Only CKD was found to be a significant covariate in the full model.
 - Mean RBC lifespan in CKD = 56.2 days, controls = 69.4 days.

Table II: PopulationApproach Results	$\hat{\overline{\Theta}}$	Ω	Mean LS	CV% _{prop}	$\sigma_{add}{}^2$
Base model	0.0133 days ⁻¹	0.1296	56.0 days	2.27	0.0234
Full model	$0.0106 days^{-1}$	0 0721	60 1 dave	2.05	0 0256

Materials & Methods

• Available RBC survival data using ⁵¹Cr labelling method:⁵

Table I: Demographics	CKD group $(n = 14)$	Controls (n = 14)
Age (years) ±SD	57.2 ± 8.6	57.3 ± 7.9
Sex (M:F)	8:6	8:6
Haemoglobin [*] (g/L) ±SD	122 ± 12	143 ± 10
*p < 0.0001		

- Two estimation scenarios were considered based on the model:
 - Estimating the main parameter controlling senescence.
 - Estimating the parameter controlling random destruction.
- Two analysis methods were used:
 - 1. A classical two-stage approach using generalized least squares.
 - \Rightarrow Preference towards one of the scenarios across the individuals?
 - 2. A full population approach using MONOLIX 1.1.⁶ \Rightarrow CKD and sex tested as covariates.

- RBC survival in CKD patients decreased by 20-30%.
- Goodness of fit was assessed based on objective function value and visual predictive checks.
- Wald test and likelihood ratio test were used to assess significance of the tested covariates.
- \Rightarrow Increase in random destruction the preferred underlying mechanism.
- Initial over-prediction due to non-specific loss of label. \Rightarrow Care should be taken when interpreting RBC lifespan values.

1. Loge J, et al. (1958). Am. J. Med. 24:4-18 4. Korell J, et al. (2010). PAGE 19 Abstr 1701, Berlin, Germany. 2. ICSH (1980). Br. J. Haematol. 45(4):659-666 5. Vos F, et al. (2011). Am. J. Kidney Dis. (accepted) 3. Korell J, et al. (2011). J. Theor. Biol. 268(1):39-49 6. Lavielle M (2005) MONOLIX 1.1. User manual.

Otago Pharmacometrics Group ~ www.pharmacometrics.co.nz